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Abstract: The concepts of well-posedness of [-set optimization problem under variable order structure are
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1 Introduction

In the last several decades, two types of criteria of op-
timization in terms of a set-valued mapping f : X —
2Y are considered, where X is a nonempty set and Y’
is a real topological vector ordered by a closed con-
vex cone D C Y. The most overwhelmingly pop-
ular criterion is looking for an efficient point of the
set f(X) = Uzex f(z). In 1999, Kuroiwa [1] intro-
duced set optimization criterion. This corresponding
criterion is seeking a minimal or maximal set of the
whole image set A = {f(y) : y € X }. Hence various
aspects of set optimization problem have been subse-
quently studied by many authors (see [2-12] and the
reference therein in detail) forasmuch as its wide ap-
plications in economics, optimal control and differen-
tial inclusion, etc. Refer to the literatures [13-15].

It is easy to consider that a problem can be solved
by approximating method. In other word, we can con-
struct several kinds of iterative sequences to approxi-
mate its solution, e.g. [16, 17]. Since it is difficult to
solve many practical problems directly, so we can use
the solutions of their approximate problems to approx-
imating some solution of the original problem. The
key issue is whether the approximating solution se-
quences converge some solution of the original prob-
lem. Thus the notion of well-posedness is introduced.
At present, there are a large number of articles inves-
tigating the well-posedness for many problems, such
as [8, 11,12, 18].
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As we know, there are a few articles concerning
well-posedness of set optimization problems. Specif-
ically, three kinds of kg-well-posedness and three
kinds of B-well-posedness of a set optimization prob-
lem were discussed by Zhang-Li-Teo [8] and Long-
Peng [12], respectively. The kg-well-posedness at a
minimizer introduced in [8] was clarified and dealt
with in the setting of set optimization problems by
Gutiérrez-Miglierina-Molho-Novod [11].

It is worth noting that the ordering structures con-
sidered above were always defined by constant cones.
In view of this fact, a cone mapping is introduced to
define a variable ordering structure and the notions of
well-posedness for set optimization problems are dis-
cussed under the defined ordering structure in this pa-
per.

Let R, R, and N be the sets of real numbers, non-
negative real numbers and positive integers, respec-
tively, and let /() be the collection of open neigh-
borhoods of %, where * is a point or a set. A set-valued
mapping f : X — 2V is said to be strict if f(z) # 0
for each z € X, where X and Y are nonempty sets.

A subset D of a real topology vector space Y is
called a cone, if A\x € D forall z € D and A > 0.
A cone D inY is said to be proper if D # Y'; to be
pointed if D N (—D) = {0y}. Let S(Y) represent
the collections of all nonempty subsets of Y. A set
A € S(Y) is said to be D-proper if A+ D # Y,
to be D-closed ([19]) if A+clD is closed, where clD
represents the closure of D; to be D-bounded ([19])
if for each neighborhood U € N (0y), there exists
A > 0 such that A C AU + D. The families of
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all D-proper, D-bounded and D-closed subsets of YV
are denoted by Sp(Y), S%(Y) and S%(Y), respec-
tively. It follows that each nonempty compact set of
Y is both D-bounded and D-closed (see Lemma 3.3
in [19]) and also D-proper if further D is proper. For
every A, B € S(Y)and A\ € R, we write A + B =
{z+y: z€A ye B, \A={ z: z € A} and
x4+ A={x}+ A.

Let Y be a real topological vector space ordered
by a convex closed cone D C Y with nonempty inte-
rior. Forany x, y € Y, writex <p yify—x € D
and x <p yify —x €intD. Forany A, B € S(Y),
denote A <\, Band A <}, Bby B C A+ D and
B C A+intD, respectively. For any A C S(Y'), the
[-strong minimal set [10] (resp., I-strong maximal set)
of A is defined as

| —sMinpA={AcA: A<, B,YBe A}
(resp.,
| —sMaxpA={AcA: B<l, A, VBec A}

In the sequel, we always let X be a nonempty
closed subset of a Hausdorff topological space X and
Y be a real Hausdorff topological vector space, let
C : X — 2Y be a set-valued mapping. The so-
called cone mapping is that C'(x) is a closed con-
vex cone with nonempty interior for each x € X and
e : X — Y a vector-valued mapping satisfying that
e(z) € —intC(z) foreach z € X.

Let f : X — 2" be a strict set-valued mapping.
The [-set minimization problem and the [-set maxi-
mization problem are given as follows:

ar) {
1@ {

respectively. & € X is called an [-strong minimal
solution of (I P) (resp., [-strong maximal solution of
(1Q)) with respect to C' if

[ — Minimizec f(x)
subject to z € X,

and
| — Maximizec f ()
subject toz € X,

TeFl={zeX: flx)el—- sMing(,)A}
(resp.,
TeG={reX: flx)yel- sMaxc(z)A}),

where A = {f(y) : y € X}.If C(x) = D for all
x € X, then the conception of /-strong minimal solu-
tion of (IP) with respect to C' reduces to the notion of
strong optimal solution with respect to the pre-order
SZD defined by Definition 5.1 (ii) in [10].
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The rest is organized as follows: In Section 2,
some preliminaries are provided. In Sections 3, the
metric characterizations and sufficient criteria of (I.P)
and (/Q) are proposed. The equivalent relations be-
tween the well-posedness of (I P) and of (5) and be-
tween well-posedness of (IQ)) and of (S) are estab-
lished in Section 4, where (S5) represents a scalar-
ization minimizing problem with objective function
¢ : X — RU {400} is described as follows:

) {

It is worth mentioning that ¢ is just a gap function of
(IP) or (IQ). The optimal set and optimal value of (S)
are denoted by argmin¢ and @, respectively. Finally,
by discussing the lower semi-continuity and convexity
of the gap functions of [-set convex optimization prob-
lems, their well-posedness are investigated in Section
5.

Minimize ¢(x)
subject to z € X.

2 Preliminaries

Let X and Y be topological spaces. A function
g : X = RU{+oo} is said to be upper semi-
continuous (resp., lower semi-continuous) on X, if
{r e X: g(x) < A} (resp., {x € X : g(x) > A})
is open for each A € R; to be level-compact on X, if
{x € X: g(x) < A} is compact for A € R.

The following conceptions of continuity for a set-
valued mapping can be found in [20].

A set-valued mapping f : X — 2" is said to
be upper semi-continuous at ro € X, if for any
N € N(f(xo)), there exists B € N(xg) such that
f(z) C N forall x € B; to be lower semi-continuous
at xo € X, if forany yo € f(zo) and any N € N (yp),
there exists B € N (x¢) such that f(z) N N # () for
all z € B; to be upper semi-continuous (resp., lower
semi-continuous) on X, if f is upper semi-continuous
(resp., lower semi-continuous) at each x € X; to be
continuous at xg € X (resp., on X), if f is both up-
per semi-continuous and lower semi-continuous at g
(resp., on X); to be closed, if its graph Graphf =
{(z,y) e X xY: ye f(x)}isclosedin X x Y.

Suppose that (X,| - ||) is a finite dimension
normed linear space and X is a nonempty subset of
X. g: X — RU{+oo} is said to be level-bounded
on X, if X is bounded or

lim
z€X, ||z|| =400
Lemma 1. [21] (i) (See [20]) Suppose that X and
Y are Hausdorff topological spaces. If a set-valued
mapping f : X — 2V is upper semi-continuous on %
with closed-values, then f is closed.

g(x) = 4o0.
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(ii) Let X be a Hausdorff topological space and
Y a real Hausdorff topological vector space, and let
f, g : %X — 2Y be two set-valued mappings. If both
f and g are upper semi-continuous on X, then so is
f+y

Proof. (ii) This argument is analogous to that of The-
orem 5.1.3 in [21]. O

Let (X,d) be a metric space and A, B C X
nonempty subsets. The excess é(A, B) of A to B and
the Hausdoraff distance H(A, B) of A and B are de-
fined as

é(A,B) = sup{d(z,B) : = € A},
H(A, B) = max{é(A, B), é(B,A)},

respectively, where d(x, B) is the distance from x to
B.

Let A be a nonempty bounded subset of a com-
plete metric space (X, d). The Kuratowski noncom-
pactness measure [22] of A is defined as

dn €N, s.t.
AC U?:lAiv
diamA; < e, Yi € [1,n]

a(A)=infce >0

where diamA = sup{d(a,b) : a, b € A} is the
diameter of A. It follows from [22] that

(i) a(A) = 0if A is compact;

(i) Fore >0, B = {a € X : d(a, A) < €}, then
a(B) < a(A) + 2¢;

(iii) a(A) = a(clA).

Now we introduce and discuss the scalarization
functions involving set-valued mappings under vari-
able order structure in order to establish the gap func-
tions of (IP) and (IQ). In the rest of this section,
assume that Y is a real topological vector space or-
dered by a proper, closed and convex cone D with
intD # (). Setdy € —intD and @ € Y. A mapping
Gdy,D,a 1 Y — R defined by, for Vy € Y,

Gay,p,a(y) =min{A € R: y € Ado +a+ D}

is called the Gerstewizt’s function. The Gerstewizt’s
function with @ = Oy is studied in [19, 23]. If further
D is pointed, it is discussed in [24].

Using a set A € S(Y) substitute a, a function
Gy p.A:Y = RU{—oco}isdefined as, forVy € Y,
Gayp.a(y) =inf{AeR: yeAdy+ A+ D}.
Obviously, G4, p,a(y) = inf{Gq, p.a(y) : a € A}.

Definition 2. Define a scalarization function G, p :
Sp(Y) x Sp(Y) = RU {£o0} by

GdO,D(A,B) = Sup{GdO,D’A(b) tbe B},
V (A, B) € Sp(Y) x Sp(Y).
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When D is pointed, both G4, p, 4 and G, p have
been studied in [6, 11]. By inspecting carefully, it is
easy to see that the arguments of Lemmas 2.16, 2.17,
3.5, Proposition 3.2 and Theorems 3.6, 3.10 in [6] do
not require the assumption that D is pointed. Based
on this fact, we give the following consequences.

Lemma 3. (i) Let A € S(Y'). Then
AeSp(Y) <= Gyyp,.aly) > —00, VyeY.

(ii) Forany A € Sp(Y), y € Y and A € R, we
have

(@) Gayp.A(y) < X <= Adp + A <4 y;

(b) Gay.0,A(y) < A<=y € Ado+cl(A+ D).
Moreover, if A € S7,(Y'), then

Gao.p.AY) < A<= Ao+ A <y y.

Proof: (i) The sufficiency is clear. Now we show its
necessity. Let R(A) = Adop + A+ D and r(\) =
Ady + A+intD. Argue it by contradiction. Suppose
that Gy, p a(yo) = —oo for some yo € Y. Then
Yo € Mdg+ A+ D, VX € R. It is easy to obtain
r(A) € R(A) C r(u) C R(p) forany A < p. So
Yo € Adg + A+intD, ¥V A € R, namely,
Yo — Adg € A+ intD, VX € R. (D
For any x € Y, taking 1 € R such that x €
—pdo+intD, we have x € —yg + yg — pudp +intD C
—yo + A+ intD by (1). Thus Y C —yg + A+intD,
which contradicts to A € Sp(Y).
(i1) This proof is similar to that of Theorem 2.1 in
[23]. O

Lemma 4. (i) For any A € Sp(Y) N SH(Y), B €
Sp(Y)and )\ € R,

Gao.p(A,B) <\ <= \dp + A <y B.

(ii) GdO,D(AaA) =0,VAe€ SD(Y) N SICD(Y)
(iii) If A € Sp(Y)N SL(Y) N S4L(Y) and B €
Sp(Y)NSH(Y), then G4, p(A, B) is real-valued and

Gao.p(A,B) =min{\ € R: My + A <, B}.

Proof: (i) Clearly, this follows from Lemma 3 (ii).
(i1) We proceed analogously to the proof of Theorem
3.10 (i) in [6]. (iii) This consequence is shown by
referring to the arguments of Proposition 3.2 and The-

orem 3.6 in [6]. O
Let
Sc(Y) = N{Sew (V) : © € X},
Sg(Y) = ﬂ{Sg(z)(Y) s x e XY

Se(Y) =N{Se, (V) : z € X},
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Two important assumptions are list as follows:

(A) C(z) is proper for each z € X;

(B) f(z) € Sc(Y)NS&L(Y) N S,(Y) for each
e X.

Obviously, both S2%(Y) and S5(Y) are
nonempty. If further (A) holds, then Sc(Y) is
nonempty. By the way, the following exemplifies that
(A) and (B) can be satisfied even if C' is not a constant

mapping.

Example 5. Let X = R, Y = R?2 and X = R and
let C : X — 2Y be defined as

C(z) ={(u,v) : v> —zuandv > 0}, 2
VorelX.
Evidently, R2. C C(z) C {(u,v) : v > 0} and C(x)
is proper for each x € X. So (A) is satisfied. For any
compact-valued mapping f : X — 2Y, (B) is also
satisfied.

The following conceptions of scalarization func-
tions involving set-valued mappings under variable
order structure are well-defined according to Lemma
4 (iii).

Definition 6. Assume that (A) and (B) hold. Define

two scalarization functions {c ¢, Nec : X x X = R,
respectively, as

Seole,y) = min{A: de(2) + f(z) <o F)),
and
Nec(a,y) = min{X: Ae(z) + f(y) <y Fl2)}

Lemma 7. Under (A) and (B), it yields that for each
z,y€ Xand \ € R,

(&1): Eeo(m,y) < A<= de(z) + f(z) <k,
f);

&2): Eeo(r,y) <X de(z) + fz) <y
f(W);

(53) fe,C(xa l‘) =0.

(m): nec(z,y) < A= Ae(@) + fy) <¢q
f(@);

(m2): Me,o(w,y) < A <= Xe(r) + f(y) <<lc(x)
f(@);

(7]3)-' ne,C(x7 .%') =0.
Proof: We arrive at these conclusions in view of
Lemmas 3 (ii) and 4 (ii). O
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3  Well-posedness of (/) and (I())

For each € > 0, a e-l-minimizing set of (IP) (resp., e-
I-maximizing set of (1QQ)) is defined as

Flle)={z e X : f(z)+ee(z) Slc(m) fly),Vye X}
(resp.,
G'(€) = {w € X : f(y) by fla)—eele), Yy € X)),

Clearly, F1(0) = F, G'(0) = G', F! ¢ Fl(¢) and
Gl c Ql(a) for each € > 0. In addition, for any 0 <
e <ée, Fl(e) c Fi(') and Gl(e) C G'(&').

Definition 8. (i) A sequence {x,} is called an I-
minimizing sequence of (IP), if there exists {e,} C
R with e, — 0 such that x,, € F'(,,).

(ii) (LP) is said to be well-posed, if F! # 0 and
for any l-minimizing sequence {x,}, there exists a
subsequence {x,,} C {x,} such that x,, — & € F
as i — —+0oo.

Definition 9. (i) A sequence {x,} is called an -
maximizing sequence of (1Q), if there exists {e,} C
R with &, — 0 such that x,, € G'(e,,).

(ii) (1Q) is said to be well-posed, if G' # O and
each l-maximizing sequence {x,} has a subsequence
{wy,} such that z,,, — T € G as i — +o0.

Remark 10. Further assume that (X, d) is a metric
space.

(i) (IP) is well-posed if and only if F' is a
nonempty compact set and for its any l-minimizing se-
quence {x,,}, d(zy,, F') — 0.

(ii) The well-posedness of (1Q)) is equivalent to
the fact that G' is nonempty compact and for its any
l-maximizing sequence {xy}, d(xyn,G') — 0.

Lemma 11. Suppose that

(al) f is upper semi-continuous on X and f(x)
is C(x)-closed for each x € X;

(a2) e is continuous on X ;

(a3) C is upper semi-continuous on X.
Then (i) F!(¢) is closed for each € > 0;

(ii) F' = Neso F'(e).

Proof: (i) For each ¢ > 0, let {z,} C Fl(¢)
with x, — = € X. Then f(x,) + ce(xy) SZC(%)
f(y), Vy € X, and so

z € f(an) + ce(xn) + C(zn),

Vze f(y),Vye X. 3)

The upper semi-continuity of f and C implies the up-
per semi-continuity of f + C' by Lemma 1 (ii). Since
f+C'is closed-valued in virtue of (al), f+C is closed
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on X by Lemma 1 (i). This, together with (3) and the
continuity of e, implies

z € f(z) +ee(z) + C(T) @
Vze fly),VyeX,

namely, f(Z) + ce(T) SZC@) f(y), Vy € X. Thus,

T € F!(e) and the closeness F'(¢) is shown.

(i) It is sufficient to verify N.~oF'(c) C FL. If
T € NesoFl(e), then (4) holds for each ¢ > 0. By
letting ¢ — 0 in (4), the closeness of f(Z) + C()
implies that 2z € f(Z) + C(z), Vz € f(y), Vy € X,
and so f(Z) glcm fly), Yy € X, thatis, z € F'. O

Lemma 12. If (a2)-(a3) and the following are ful-
filled:

(a4) f is lower semi-continuous on X with
compact-values,
then

(i) G () is closed for each € > 0;

(ii) G = Nen0GL ().

Proof: (i) For each ¢ > 0, by taking {z,} C G!(¢)
with z, — z € X, it follows that f(y) <{,
f(zy) —ee(zy), Vy € X. In view of the lower semi-
continuity of f, for each w € f(z), Uy, € f(zy) can
be chosen to satisfy 4, — u by the equivalent state-
ment of lower semi-continuity (See [20]). Then for

eachy € X,
Uy, —ee(Tp) € Uy +C(xy,) for some 0, € f(y). (5)

Assume that 0,, — v € f(y) with loss of generality.
To all appearances, C' is closed by Lemma 1 (i). Let-
ting n — +o0 in (5), we have @ — ce(Z) € v + C(Z),
and so f(z) — ee(Z) C f(y) + C(z). Thereby, T €
G'(e) and G!(¢) is closed.

(ii) Now testify N.~0G!(¢) C G! for each ¢ > 0.
Taking Z € N->0G'(€), we have u — ee(Z) C f(y) +
C(z), Vu € f(z). It is obvious that f(y) is C(Z)-
closed due to its compactness. Hence f(z) C f(y) +
C(z),Vy € X,andsoz € G. 0

Theorem 13. Suppose that (X,d) is a Hausdorff
complete metric space and X is a nonempty closed
bounded subset.

(i) If (IP) is well-posed, then

Fl(e)#£0, Ve > 0and lima(F(e)) =0. (6)
E—

(ii) If (al)-(a3) hold, then (6) implies the well-

posedness of (L P).

Proof: (i) The well-posedness of ({P) implies that
F! is nonempty compact. Since F' C Fl(g), Ve >
0, o(F') = 0 and Fl(g) # 0 for all ¢ > 0,
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which deduces that a(Fl(¢)) < 26(F'(e), F') +
a(}'l) = Qé(fl(e), ]-'l). Now it suffices to testify that
lin%) é(Fl(e),FY) = 0. Or else, there exist r > 0,
E—r

en 4 0and z, € F'(s,) such that

d(zy,, F') > rforalln € N. (7)

Clearly, {x,} is an [-minimizing sequence of (/P) and
satisfies d(z,,, ') — 0 by Remark 10 (i), which con-
tradicts to (7).

(ii) For any [-minimizing sequence of ({P), take
{en} € Ry with g, — 0 such that z,, € F'(s,).
By Lemma 11 and the boundedness of X, F(s,,) is a
nonempty bounded and closed, and lim. .o F!(¢) =
F'. Since Fl(e) C Fl(¢') forany 0 < ¢ < £/, and
lim. o a(F(g)) = 0, F' is nonempty compact and
lim. o H(F'(¢), F') = 0 by Kuratowski Theorem
[22]. Thereby, lim._,q d(z,, F') = 0 and so the well-
posedness of (I P) is testified by Remark 10 (i). O

A similar argument of the proof in Theorem 13
covers the case where the metric characterization of
(IQ) is obtained according to Lemma 12.

Theorem 14. Let (X, d) be a Hausdorff complete met-

ric space and X a nonempty closed bounded subset.
(i) If (1Q) is well-posed, then

Gl(e) #0, Ve >0and hgéa(gl(e)) =0. (8
(ii) If (a2)-(a4) are imposed, then (8) implies the
well-posedness of (1Q).

Now we pay attention to the sufficient conditions
of well-posedness of (IP) and (IQ).

Theorem 15. Assume that (al)-(a3) hold and F' # 0.
Then (IP) is well-posed if
(b1) Fl(e0) is compact for some £ > 0.

Proof: For any [-minimizing sequence {x,,} of (I P),
let {e,} C Ry with g, — 0 satisfying x,, € Fl(e,,).
Under (bl), assume that x,, — & € X without loss of
generality since x,, € F!(gq) for enough large n € N.
Then f(zy,)+ene(zn) §lc(xn) f(y), Vy € X. By the
similar argument of the proof in Lemma 11 (i), we see
that f + C' is closed, and so f(Z) §lc(j) fly), Yy e

X, namely, Z € F'. Consequently, (I P) is well-posed.
O

Theorem 16. Let (a2)-(a4) hold and G' # 0. Then
(1Q) is well-posed if
(b2) G (o) is compact for some g > 0.

Proof: For any given [-maximizing sequence {z,}
of (IQ), let {e,} C Ry with ¢, — 0 such that
r, € Gl(ey). As a result of (b2), {z,,} has a subse-
quence, still denoted by {zy, }, such that z,, — = € X.
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This means f(y) +ene(zy) §ZC($”) f(zn), Yy € X.
Furthermore, we have f(y) Slc(f) f(z), Yy € X by
the analogous argument of the proof in Lemma 12 (i),
and so Z € G'. Therefore, the well-posedness of (IQ)
is shown. O
Note that the upper semi-continuity (resp., lower
semi-continuity) of f is necessary to guarantee the
well-posedness of (IP) (resp., (IQ)) in Theorem 15
(resp., Theorem 16). See the following examples.

Example 17. Let X =R, Y = R? and X = [0,1] U
[2,3], let C, e and f be defined by
w-{% Tsaw o
o={{ " ek w
fla) = { %;:0)}’ l:?d, 11U [2,3].

By observing simply, (IP) is ill-posed (i.e., not well-
posed) by Remark 10 (i) since F' = (0,1] U [2, 3]
is noncompact. Apparently, the conditions except the
upper semi-continuity of f in Theorem 15 are satisfied
(Indeed, f is not upper semi-continuous at x = 0).

Example 18. Let X =R, Y = R? and X = [0,1] U
(2, 3]. Define C by (9), e by (10), and f by
[ {(0,0)}, =0,
f@”)‘{ 1,2 % [1,2], =€ (0,1 U[23]

Lightly, G' = (0,1] U [2, 3], which implies the ill-
posedness of (1QQ) by Remark 10 (ii). It is easy to show
that the conditions in Theorem 16 are satisfied exclud-
ing the lower semi-continuity of f (Actually, f fails to
be lower semi-continuous at x = 0).

By Remark 10 and Theorems 15-16, the follow-
ing implications hold:
well-posedness of (IP)
— F!is nonempty compact,
well—posedness of (IQY)
:> g is nonempty compact,

a3)

(bl) :> well-posedness of (IP),
(b2) :(BA) well-posedness of (IQ).

In the following results, we will see that the recip-
rocal statements are true in a Hausdorff locally com-
pact metric space (X, d).

Theorem 19. Assume that (X, d) is a Hausdorff lo-
cally compact metric space and F'(¢) is a connected
subset for each € > 0. If (al)-(a3) hold, then the fol-
lowing are equivalent:
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(i) F' 0 and (b1) holds;
(ii) (IP) is well-posed;
(iii) F' is nonempty compact.

Proof: The implications (i) = (ii) and (ii) = (iii) are
Theorem 15 and Remark 10 (i), respectively.

(iii) = (i) According to the local compactness of
X, there exists € > 0 such that B, = {z : d(z, F') <
¢} has compact closure. Write S, = {z : d(x, F!) =
e}. If (bl) fails, then 7' (1) N (B.)¢ # @ foralln € N.
Otherwise, F!(1) C B, C clB. and so ]-'l(n) is com-
pact for all n € N by Lemma 11 (i), which is absurd
by the assumption that (bl) fails. Since () # F
F'(1) N B, x;, can be selected in 7'(1) N S by the
connection of F l( ) for each n € N. Without loss of
generality, let x,, — & € S, by the compactness of S..
Clearly, f(zn) + %e(xn) SlC(zn) fly), Vye X.
By the similar argument of (4), we have f() Slc(@)
f(y), Vy € X and so Z € F'. An obvious contradic-
tion arises. Thus, (b1) holds. O

Theorem 20. Suppose that (X, d) is a Hausdorff lo-
cally compact metric space and G'(¢) is a connected
subset for each ¢ > 0. If (a2)-(a4) are fulfilled, then
the following are equivalent:

(i) G' # 0 and (b2) holds;

(ii) (1Q) is well-posed;

(iii) G' is nonempty compact.

Proof: Similar to the proof in the preceding Theorem.

4 The relations between well-
posedness of (/P)/(I()) and that
of (5)

Now the equivalent relations between the well-
posedness of (I P) and that of (S) and between well-
posedness of (IQ)) and that of (S) are studied, where
we regard the gap functions of (IP) and (IQ)) as the
objective function ¢ of (.5).

Definition 21. (i) {z,} is called a minimizing se-
quence of (S), if limp— 00 ¢(Tn) = @

(ii) (S) is said to be well-posed, if argmin ¢ # ()
and any minimizing sequence {x,} of (S) has a sub-
sequence {xy,} satisfying x,, — T € argming as
1 — +00.

Definition 22. A function g : X — R U {+oc} is
called a gap function of (IP) (resp., (1Q)), if

(i) g(x) > O forall x € X;

(i) g(x) = O ifand only if v € F' (resp., x € G'.)
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Lemma 23. Let the criteria (A) and (B) hold and de-
fine F, G : X — RU {400} as follows:

F(ac):supgejc(x,y), VxGX, (11)
yeX
G(z) = supne,c(z,y), Vo e X, (12)

yeX

respectively, where & ¢ and 1) ¢ are defined by Def-
inition 6. Then F (resp., G) is a gap function of (IP)
(resp., (1Q)).

Proof: Forany z € X, & c(x,z) = 0 by Lemma 7
(&§3). Thus,

F(z) >0,Vaz € X. (13)

Finally,

F(z)=0
= Leolr,y) <0, Vye X (By (13))
= f(z) <p fW), Yy € X By (&)
— z e F.

Thus F' is a gap function of (/ P).
It follows from the similar argument that
Gx)>0,VxeX 14)
according to Lemma 7 (13), and that G(x) = 0 if and
only if x € Gl by Lemma 7 (1) and (14). This com-
pletes to verity the fact that G is a gap function of

Q).

Theorem 24. Under the terms (A) and (B), we have
(i) (IP) is well-posed if and only if so is (S), where
its objective mapping ¢ = F' is defined by (11).
(ii) (1Q) is well-posed if and only if so is (S),
where its objective mapping ¢ = G is defined by (12).

Proof: (i) Clearly, 2 € F! if and only if  €argminF'
and u = 0. In addition,
{xy} is an [-minimizing sequence of (IP)
= 3{e,} €R, withe, = 0s.t. 2, € Fl(ey,)
< J{e,} € Ry withe, — Os.t.
fe,C(xn)y) < &n, Vy €X, (BY (51))

<= d{ep} € Ry withe, = 0s.t. F(zy,) <ep
< limy, 100 F(zn) =0=1 (By (13))
<= {x,} is a minimizing sequence of (.5).
Thereby, the conclusion of this theorem is proved.

(ii) Similarly, in the case of (IQ), the equivalent
relation is verified by Lemma 7 (17;) and (14). O

Further assume that (X, d) is a metric space. By
Theorem 24, the well-posedness of (IP) (resp., (IQ))
is equivalent to the fact that for any /-minimizing se-
quence {z,} of (IP) (resp., [-maximizing sequence
{zn} of IQ)), F(xn) — @ (resp., G(zy) — @) im-
plies d(z,,, F!) — 0 (resp., d(x,, G') — 0. It’s nature
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to consider how to estimate a bound below |F'(z) — |
(resp., |G(x) — ) by d(x, F!) (tesp., d(z,G')). A
forcing function is defined for this purpose. A real-
valued function ¢ : T' — R is called a forcing func-
tion [25], if

0T CRy, ¢(0)=0,
tn €T, c(ty,) - 0= t, — 0.

Theorem 25. Let (X, d) be a Hausdorff metric space.
The following assertions are equivalent based on the
assumptions of (A) and (B):

(i) (IP) is well-posed;

(ii) F' is nonempty compact and there exists a
forcing function ¢ : T = {d(x, F'): x € X} — Ry
satisfying

F(z) > c(d(z, FY), YV € X, (15)

where F is defined by (11).

Proof: In virtue of Lemma 23, F' is a gap function of
(P).

If (i) holds, then F' is nonempty compact by Re-
mark 10 (i). Now define ¢ : T = {d(x, F') : = €

c(t) = inf{F(z) : d(z,F')=t}, VteT.

Then d(z, F') = t = 0 implies © € F' by the com-
pactness of F! and so F'(z) = 0 according to Defi-
nition 22 (ii). Thus, ¢(0) = 0. Letting t,, € 1" with
c(tn) — 0, we have c(t,) = inf{F(x) : d(z,F') =
tn}. {zn} C X can be selected to satisfy ¢, =
d(x,, F') and F(z,) — 0 by the definition of in-
fimun. Obviously, {x, } is a minimizing sequence of
(S) with objective mapping ¢ = F', and also an [-
minimizing sequence of ({P) by & = 0 and the ar-
gument of the proof of Theorem 24 (i). As a result,
t, — 0 and (15) holds. Therefore, the assertion (ii) is
true.

On the contrary, (ii) means for any /-minimizing
sequence {z,} of (IP),(15) becomes F(x,) >
c(d(z,, F)), V n € N. By the same argument of
the proof of Theorem 7 (i), {z,} is a minimizing
sequence of (S) with ¢ = F. So F(x,) — 0 and
c(tn) — 0, where t,, = d(zy,, F'). By (15), we have
t, — 0. This, together with the assumption that F'
is nonempty compact, deduces the well-posedness of
(IP) by Remark 10 (i).

Theorem 26. Let (X, d) be a Hausdorff metric space.
The following are equivalent to each other under (A)
and (B):

(i) (1Q) is well-posed;

(ii) G is nonempty compact and there exists a
forcing function ¢ : T = {d(x,G") : v € X} = Ry
such that G(z) > c(d(z,G')), V= € X, where G is
defined by (12).
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Proof: In virtue of Lemma 23, G is a gap func-
tion of (IQ)). The rest of this proof closely resembles
that of Theorem 25 by referring to the proof of The-
orem 24 (ii) instead of Theorem 24 (i) and replacing
[-minimizing sequence by /-maximizing sequence. O

5 Well-posedness of [-set convex opti-
mization problem

In general, the objective mapping ¢ of (.S) is required
to be lower semi-continuous. Also, Beer-Lucchetti
[26] pointed out a main fact that all convex and lower
semi-continuous problems (5) defined on a locally
compact metric space with a unique minimizer are
well-posed. Applying the convexity and lower semi-
continuity of the constructed gap functions, we stud-
ied the well-posedness of [-set convex optimization
problem.

Lemma 27. Both the following conclusions hold in
case of the hypotheses (A) and (B).

(i) If (al)-(a3) hold, then F defined by (11) is
lower semi-continuous on X. If F' # 0, then
domF # ).

(ii) If (a2)-(a4) hold, then G defined by (12) is
lower semi-continuous on X. If G # 0, then domG #
0.

Proof: (i) In order to show the lower semi-continuity
of F, it is sufficient to testify the closeness of L(e) =
{z € X : F(x) < ¢} for each ¢ € R. As a matter
of fact, letting {z,,} C L(e) with x,, — Z, we have
&e.c(Tn,y) < e, Yy € X. This implies (3) owing to
Lemma 7 (£1). By the similar argument of the proof
in Lemma 11, we can obtain & € L(e), and so F is
lower semi-continuous on X . If 7! # {), then F(z) =
0, V= € F' by Lemma 23. Thus domF # ).

(ii) The analogy argument covers the cases where
G is lower semi-continuous and domG # () by apply-
ing Lemma 7 (771) and Lemma 23. ad

Definition 28. Suppose that X is a nonempty convex
subset of a topological vector space X. A set-valued
mapping f: X — 2V is said

(i) to be convex-like (resp., concave-like) on X if
for each x1,x9 € X and eacht € [0, 1],

tf(@1) + (1 =) f(w2) C flter + (1 = t)x2)
(respectively,
flter+ (1= t)a2) Ctf(z) + (1 — 1) f(x2);

(ii) to be C-convex (resp., C-concave) if f + C is
convex-like (resp., concave-like) on X.
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Remark 29. (i) If C(z) = K, YV x € X, then the
notion of C'—convexity reduces that of K—convexity
introduced by Fang-Hu-Huang [27].

(i) If X =X =R"andY = R", the convex
process from X to Y defined by Rockafellar [28] is
just a convex-like mapping.

Lemma 30. Suppose that X is a Hausdorff topologi-
cal vector space and X is a nonempty closed convex
subset of X. Besides the qualifications (A) and (B), let
the following condition hold:

(C) intC # ), and e(x) = € € —intC, ¥V z € X,
where C = N{C(z) : = € X}.

(i) If f is C-convex on X, then F defined as (11)
is convex on X.

(ii) If f is concave-like on X with convex-values
and C' is convex-like on X, then G defined as (12) is
convex on X

Proof: (i) Apparently, it’s enough to testify

Ceo(ter + (1 —t)xa,y)

<teoclrny) + (1— esclany) 19

for each z1,x2,y € X and each ¢t € [0, 1]. Indeed,
letting \; = & c(xi,y), @ = 1, 2, we have f(y) C
Xi€ + f(x;) + C(x;), i = 1, 2 by Lemma 7 (&1). In
this event,

fly) ctfly)+ A -t)f(y)
C t()\lé + f(:El) + C(l’l))
+(1 —t)(A2& + f(z2) + C(x2))
C (t)\l + (1 - t))\g)é
+f(tzr + (1 —t)xe) + C(txr + (1 — t)z2)

in view of the C-concavity of f, which yields
Cec(try + (1 — t)ag,y) < tAr + (1 — t)Ag, viz,
(16).

(i) Clearly, f(y) = tf(y) + (1 —1)f(y), Vy €
X, V't € [0, 1] by the convex-values of f. For each
x1, x2, y € X and each ¢ € [0, 1], it follows that

fltzr+ (1 =t)z2) Ctf(z1) + (1 —t)f(22)
Ct(f(y) +nec(z1,y)e+ C(x1))
+(1 = t)(f(y) + ne,c (2, y)e + C(x2))
C f(y) + (tnec(z1,y) + (1 — t)nec(z2,y))e
+C(tz1 + (1 —t)xg)

and so 1 o (tx1 + (1 —t)z2,y) < tne,c(x1,y) +(1—
t)ne,c(x2,y) by Lemma 7 (1)1). Therefore, G is con-
vex.

It is easy to see that the convexity-like of f im-
plies that f is convex-valued. However, the concavity-
like of f cannot guarantee this property. See the fol-
lowing example.
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Example3l. Let X =X =Y =Rand f : X — 2V

defined as
_J (=l =)\ {03,
0 ={ oy

It is easy to see that f is concave-like, but not convex-
valued.

In addition, neither C'-convexity nor C-concavity
of f can guarantee that f is convex-valued. For exam-
plelet X =X=Y =RandC(z) =R;, Vz e X,
and let f : X — 2Y be defined by

{0,z2}, x>0,

f(gg):{ {0}, =z<o0.

By simply calculating, f is both C-convex and C-
concave, while not convex-valued.

x #0,

x = 0.

On the other hand, the property of convex-values
of f cannot guarantee any one of convexity-like,
concavity-like, C-convexity and C-concavity. In
terms of single-valued mapping f, both convexity-like
and concavity-like of f are required to agree with

[z + (1= t)xg) = tf(21) + (1 — 1) f(22),
Ve, o€ X, Vte [0,1],

while this equation fails in general.
Nowlet X =X =Y =Rand f,g: X — 2" be

defined as
[ {0}, z=0, [ A1}, z=0,
f(x)_{{l}, x40, 9(:”)_{{0}, x #0.

Obviously, both f and g are convex-valued, but f fails
C-convex and g fails C-concave, since

3/(0) +3/(1) +Re & f(5) + Rt

and

9(3) + Ry & 39(0) + 3g(1) + Ry

Incidentally, the mapping defined by (2) satisfy-
ing intC' # ().

Theorem 32. Assume that (X,d) is a Hausdorff lin-
ear, locally compact metric space, X is a nonempty
closed convex subset of X. If (A)-(C) and (al)-(a3)
hold, f is C-convex on X, and F Lisa singleton, then
(IP) is well-posed.

Proof: Consider (S) with ¢ = F defined by (11).
It follows from Lemmas 27 and 30 that ¢ is con-
vex and lower semi-continuous on the convex set X.
Since F' defined by (11) is a gap function of (IP),
argming = F' is a singleton. Thus (S) with ¢ = F is

E-ISSN: 2224-2880

65

Dening Qu, Caozong Cheng

well-posedness according as Theorem 2.1 in [26] and
so (I P) is well-posed by Theorem 24 (i).

Also using Theorem 2.1 in [26], we obtain the fol-
lowing similarly by applying Theorem 24 (ii) instead
of Theorem 24 (i).

Theorem 33. Let (X, d) be a Hausdorff linear, locally
compact metric space and X a nonempty closed con-
vex subset of X. If (A)-(C) and (a2)-(a4) hold, f is
concave-like on X with convex-values, C' is convex-
like on X and G' is a singleton, then (1Q)) is well-
posed.

By the way, based on the assumptions of (A) and
(B), the conclusion in Theorem 15 still holds if (b1) is
replaced by one of the following:

(b3) F is level-compact on F* (e0) for some g¢ >
0;

(b4) X is a finite dimension normed linear space
and F'is level-bounded on X.

In fact, (b3) implies that Fl(gg) = {z €
Fl(eg) : F(x) < e} for each ¢ > &g and so it is
compact, that is, (bl) is satisfied. In addition, (b4)
deduces that A(e) = {z € X : F(z) < &€} is
bounded for each ¢ € R. Otherwise, ||z,| — +o0
and F'(z,) < gg for some {z,,} C A(cp) and some
g0 € R, which is absurd by (b4). In addition, A(eg)
is closed by Lemma 27 (i). Then A(gq) is compact by
its boundedness and closeness and so (bl) is true by
.Fl(E()) C A(Eo).

Likewise, the conclusion in Theorem 16 is true as
well if one of the criteria below is substituted for (b2)
in case of (A) and (B).

(b5) G is level-compact on G'(g¢) for some g >
0;

(b6) X is a finite dimension normed linear space
and G is level-bounded on X.
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